Кремнийорганические эмали и краски

обзоры, методики, рецепты

Определение скорости испарения и относительной летучести

Процесс испарения летучих жидкостей описывается уравнением Лангмюра — Кнудсена:

(11)

где W — скорость испарения; m — масса испарившейся жидкости; τ — продолжительность испарения; s—поверхность испарения; P1 — давление пара жидкоcти; M — молекулярная масса; T — температура поверхности испарения; 0 < k < 1 — поправочный коэффициент.

За счет теплоты испарения поверхность жидкости охлаждается, что вносит погрешность в определение скорости испарения. Понижение температуры поверхности испарения зависит от летучести растворителя (рис. 21): чем выше летучесть растворителя, тем больше снижение температуры поверхности. При экспериментальных определениях летучести растворителей необходимо учитывать передачу теплоты из воздуха и от подложки. С учетом этого понижение температуры испаряющей поверхности можно выразить следующей формулой:

(12)

где h — коэффициент теплопередачи; k — теплопроводность; ΔHисп — теплота испарения; рi0 — давление насыщенного пара растворителя; Pi00 — давление пара растворителя над поверхностью; Cn — экспериментальный коэффициент, учитывающий теплопередачу от подложки; сn можно рассчитать на основании экспериментальных результатов; для ацетона Cn = 4,8.

Расчетные результаты имеют хорошую сходимость с экспериментальными. Так, при испарении воды при 25 0C ее поверхность охлаждается до 15,6 0C При этом давление пара снижается с 3,20 кПа(24 мм рт. ст.) до 1,73 кПа (13 мм рт. ст.).

Рис. 21. Понижение температуры поверхности при испарении растворителей: 1 — бутилацетат; 2— толуол; 3—изопропиловый спирт; 4—гексан; 5—ацетон.

Если окружающий воздух имеет влажность 50 %, что соответствует давлению водяного пара 1,60 кПа (12 мм рт. ст.), то движущая сила испарения, равная разности давлений пара, в случае отсутствия охлаждения поверхности при 25 °С составляла бы 3,20 — 1,60 =1,60 кПа (12 мм рт. ст.); когда же имеет место охлаждение поверхности, движущая сила существенно уменьшается: 1,73— 1,60 = 0,13 кПа (1 мм рт. ст.). Следовательно, и скорость испарения снижается в 12 раз.

При диффузии растворителя из слоя жидкости его молекулы должны диффундировать через: а) жидкую фазу к поверхности, б) поверхностный слой жидкости и в) ламинарный пограничный слой воздуха. После этого, попав в турбулентный слой обтекающего воздуха, пары растворителя уносятся. С точки зрения диффузии, испарение жидкости описывается уравнением Гарднера:

(13)

где а — константа; D — коэффициент диффузии молекул жидкости в воздух; P—атмосферное давление; х — эффективная толщина ламинарного воздушного слоя над поверхностью испарения.

Если уравнение Лангмюра — Кнудсена (11) справедливо только для испарения растворителя в вакууме, то уравнение Гарднера (13) можно применять в случае испарения на воздухе; однако оно также содержит константу, значение которой определяется условиями проведения эксперимента. Кроме входящих в уравнение Гарднера параметров на испарение существенное влияние оказывает также скорость воздуха над поверхностью испарения.

Эффективная толщина ламинарного слоя над поверхностью х зависит как от скорости воздуха, так и от формы сосуда, в котором проводится определение. Эти параметры, а также протяженность поверхности испарения, контактирующей с потоком воздуха, учитывает следующее уравнение:

(14)

где n—концентрация пара у поверхности; H — расстояние от поверхности испарения до стенки; l— длина поверхности испарения; V1 — линейная скорость воздуха; D — коэффициент диффузии молекул растворителя в воздух; ξ — аэродинамический коэффициент смещения (коэффициент захвата).

Формулы (11), (13) и (14) позволяют выражать абсолютную скорость испарения. Для технолого-лакокрасочников чаще всего достаточно иметь относительные величины для сравнения летучести растворителей. Относительную летучесть Wотн определяют по продолжительности испарения определенного количества растворителя в сравнении с эталонным растворителем, например диэтиловым эфиром, бутилацетатом (БА) или ксилолом:

(15)

где τВА90% — время испарения 90 % бутилацетата; τ90% — время испарения 90 % данного растворителя.

Для определения относительной летучести растворителей разработаны различные методы и их модификации. В основе этих методов лежит определение кинетики испарения растворителей из тонких пленок, поскольку процесс испарения из больших масс растворителей не дает представления о характере улетучивания растворителя из лакокрасочных покрытий.

Для исследования кинетики испарения небольшие количества растворителя наносят на различные подложки как пористые (ватман, фильтровальная бумага), так и гладкие (стекло, алюминий). Чтобы подложка во время опыта смачивалась равномерно, поверхность, например, алюминиевых дисков обрабатывают раствором щелочи. Другая трудность состоит в исключении неравномерности слоя из-за капиллярного эффекта. В зависимости от формы и размера диска, на который наносят растворитель, жидкость может либо подниматься по его бортикам, либо собираться в середине диска.

Comments are closed.